4 Decomposition
using Rtemis
iris = ddb_data("~/icloud/Data/iris.csv")
4.1 PCA
iris_pca = d_PCA(iris[:, 1:4], 2)
dplot3_xy(
iris_pca.projections_train,
xlab="PCA 1", ylab="PCA 2",
group=iris.Species
)
4.2 ICA
iris_ica = d_ICA(iris[:, 1:4], 2, tol = .1)
dplot3_xy(
iris_ica.projections_train,
xlab="ICA 1", ylab="ICA 2",
group=iris.Species
)
4.3 KPCA
iris_kpca = d_KPCA(iris[:, 1:4], 2)
dplot3_xy(
iris_kpca.projections_train,
xlab="KPCA 1", ylab="KPCA 2",
group=iris.Species
)
4.4 NMF
iris_nmf = d_NMF(iris[:, 1:4], 2)
dplot3_xy(
iris_nmf.projections_train,
xlab="NMF 1", ylab="NMF 2",
group=iris.Species
)
4.5 ISOMAP
(Note: Using a high number of neighbors for the nearest-neighbor step to avoid disconnected components)
iris_isomap = d_ISOMAP(iris[:, 1:4], 2, n_neighbors=25)
dplot3_xy(
iris_isomap.projections_train,
xlab="ISOMAP 1", ylab="ISOMAP 2",
group=iris.Species
)
4.6 LLE
(Note: as above, using high n neighbors)
iris_lle = d_LLE(iris[:, 1:4], 2, n_neighbors=50)
dplot3_xy(
iris_lle.projections_train,
xlab="LLE 1", ylab="LLE 2",
group=iris.Species
)
4.7 UMAP
iris_umap = d_UMAP(iris[:, 1:4], 2)
dplot3_xy(
iris_umap.projections_train,
xlab="UMAP 1", ylab="UMAP 2",
group=iris.Species
)
4.8 t-SNE
iris_tsne = d_tSNE(iris[:, 1:4], 2)
dplot3_xy(
iris_tsne.projections_train,
xlab="t-SNE 1", ylab="t-SNE 2",
group=iris.Species
)